
Making the ELAIS-N1 DR2 PyBDSF catalogue (v1.0)
This document briefly summarises the steps taken to produce the ELAIS-N1 Deep Field final radio catalogue
with PyBDSF, and in particular highlights steps that are different from those in the first LoTSS Deep Fields data
release (and wider LoTSS survey).

1 Motivation

The motivation for adjusting the methodology by which PyBDSF is used is the following:

• PyBDSF generates the RMS map prior to removal of any sources

• This means that when there are lots of sources, such as in the final Deep Fields maps, the RMS is elevated

• This affects detection of sources, their SNR (= peak flux density / rms noise) and leads to more sources
only being detected in wavelet modes

• If we want to use sources for studies with an SNR cut then you can lose a lot of sources without access to
the wavelet RMS maps and these are not stored in the PyBDSF catalogue

• An examination of the residual images from the LoTSS Deep Fields first data release (and for LoTSS)
reveals that a small number of very large bright sources can be missed

• The deep multi-wavelength data in the Deep Fields, which provide a host identification for almost all radio
sources, allow a direct test of whether a lower significance threshold could be set with PyBDSF to obtain
more sources without a significant fraction of false detections.

2 A multi-pass PyBDSF approach to optimise RMS noise estimates

To make the primary PyBDSF catalogue we take the general approach of first removing the sources, then calcu-
lating the RMS map from this residual image (in order to get the true values), and then supplying PyBDSF with
this RMS map as an input (i.e. double-pass detection). However, there is the subtlety in that we need to retain
the bright (>150σ ) sources in the image, so that PyBDSF correctly adjusts the RMS box around bright sources.
Specifically, the process was therefore:

1. Run PyBDSF in the standard configuration (see below). From this save the residual maps and the source /
Gaussian catalogues (hereafter known as Resid Default, Src Default and Gaul Default)

2. Using the Src Default and Gaul Default catalogues, find the 150σ sources and find the associated Gaus-
sians for each of the 150σ sources.

3. Use an elliptical cut out with radius = 1.5 x Major/Minor axis of the sources to find the model of the Gaus-
sians which make up the 150σ sources. Inject the models for the bright sources back into the Resid Default
image to create Resid DefaultWithBright image.

4. Run PyBDSF using the same parameters as in (1) on Resid DefaultWithBright in order to determine the
RMS map in a manner unaffected by the high density of faint sources in the image - this is known as
RMS Deep

5. Run PyBDSF over the original image supplying it mean maps = 0 and rms maps of RMS Deep and a
version of RMS Deep which is primary beam uncorrected. This creates catalogues Srl Deep and Gaul4 as
well as RMS map RMS Final (==RMS Deep) and Residual map Resid Deep



Figure 1 compares the outcome of this approach, for different thresholds in SNR (see Sec. 4). A comparison of
the blue and brown curves (default PyBDSF vs. this double-pass detection approach for the standard 5σ thresh-
old), shows how the double-pass detection leads to an the increase in the number of sources with SNR>5, as
sources are picked up in the map using the deeper rms map and no longer rely upon being detected in the wavelet
scale fitting. This further produces as a suppression of wavelet-mode detected sources with SNR<5.

Standard PyBDSF detection mode:
bdsf.process image(imf, detection image=appf, thresh isl=3.0, thresh pix=4.0,

rms box=(150,15), rms map=True, mean map=‘zero’, ini method=‘intensity’,

adaptive rms box=True, adaptive thresh=150, rms box bright=(60,15), group by isl=False,

group tol=10.0, output opts=True, output all=False, atrous do=True, atrous jmax=4,

flagging opts=True, flag maxsize fwhm=0.5, advanced opts=True, blank limit=None,

frequency=restfrq)

PyBDSF detection mode when supplying maps:
bdsf.process image(imf, detection image=appf, thresh isl=3.0, thresh pix=4.0,

rms box=(150,15), rms map=True, mean map=‘zero’, ini method=‘intensity’,

adaptive rms box=True, adaptive thresh=150, rms box bright=(60,15), group by isl=False,

group tol=10.0, output opts=True, output all=False, atrous do=True, atrous jmax=4,

flagging opts=True, flag maxsize fwhm=0.5, advanced opts=True, blank limit=None,

frequency=restfrq, rmsmean map filename=[meanf, rms image withBright f],

rmsmean map filename det=[meanf, rms image withBright appf])

Figure 1: SNR comparisons of surveys using previous default mode (brown), and to using this “double” detection
mode PyBDSFwith either a 5σ (blue), 4σ (red) or 3σ (magenta) detection threshold. A 3σ run as in default mode,
but using a 2/3σ limit for the island boundary and peak limits is also shown (grey).



3 Missing large and bright components

Once we have Resid Deep, we want to detect (and add to the catalogue) the large, bright sources which remain
in the image. These were found to be able to be included in the catalogue through changing the flag maxsize bm
parameter to a larger value; however, changing that parameter on the original PyBDSF run leads to poorer per-
formance on faint sources (where large halos can be erroneously detected). To add these missing bright sources
back in, we take the following approach:

1. Run PyBDSF on Resid Deep, with the change of setting flag maxsize bm=100, when supplying the RMS
map (see below) and removing the atrous fitting mode.

2. Create Resid large, Model large, Srl large and Gaul large

3. Using a 10 sigma threshold on the peak flux density, include such sources (and their Gaussians) in the
Srl Deep/Gaul Deep catalogues to create Srl Final/Gaul Final catalogues. Visual inspection indicated
that sources with less than 10 sigma tended to mostly be false detections in the residual image.

4. Create a final residual map by subtracting the Model large from Resid Deep to create Resid Final

PyBDSF detection mode for large sources:
img supply large = bdsf.process image(int residf,detection image=app residf,thresh isl=3.0,

thresh pix=10.0, rms box=(150,15), rms map=True, mean map=‘zero’, ini method=‘intensity’,

adaptive rm s box=True, adaptive thresh=150, rms box bright=(60,15), group by isl=False,

group tol=10.0, output opts=True, output all=False, flagging opts=True,

flag maxsize fwhm=0.5, advanced opts=True, blank limit=None, frequency=restfrq,

rmsmean map filename=[meanf, rms image withBright f], rmsmean map filename det=[meanf,

rms image withBright appf], flag maxsize bm=100)

4 Optimising the detection threshold

The 5σ peak SNR threshold that has been adopted as standard in LoTSS catalogues is conservative. PyBDSF is
also significantly incomplete down to 5σ .

Using the very high host galaxy identification fraction in the Deep Fields (>97%), we test the reliability of
the sample exploring to lower SNR thresholds. To do this, we ran the double-pass detection method outlined
in Sec. 2 up to and including stage 4, using a 5σ detection threshold. We then ran PyBDSF supplying the 5σ

derived RMS map but then extracting sources down to 3σ (setting thresh isl=2.0 and thresh pix=3.0). We then
considered those sources within the region of the multi-wavelength imaging which have a major axis size below
10 arcsec, as these are predominantly suitable for likelihood ratio (LR) cross-matching. Figure 2 shows the frac-
tion of sources that have a host galaxy match above the LR threshold, for different bins in source SNR, in this
3σ catalogue.

The blue horizontal line in Figure 2 shows the average fraction of host galaxy IDs for the full sample. Note that
this is a little below 100%, because some of these sources may be components of multi-component sources and
thus not have an ID, while for some others the host galaxy may be too faint and undetected in the optical/IR data.
As can be seen in Figure 2, the host galaxy ID fraction remains around the average value down to SNR=5, then
decreases slightly over 4 < SNR < 5, and then begins to fall quickly away. The drop in host galaxy ID fraction
is caused by some of the PyBDSF detections not being genuine sources at lower values of SNR. The analysis
shows the between 4 <SNR< 5, only 2-3% of PyBDSF sources will be false detections, while below SNR=4
that fraction begins to increase rapidly.

Figure 1 compares (in the blue, red and purple lines) the SNR distribution of sources down using double-pass
detection when run to final 3σ , 4σ and 5σ thresholds, as described above, and quantifies the total number of



sources detected in the multi-wavelength regions. The total number of sources detected in the 4σ double-pass
detection catalogue is ≈ 30% higher than the number detected in the default 5σ (or double-pass 5σ ) catalogue.
This is a significant addition. We note that these sources do not all correspond to 4<SNR≤5 sources; the fraction
of sources in the 4σ threshold catalogue with 4 <SNR< 5 is about 20%. The other additional sources arise both
due to a significantly increased source completeness over the range 5 <SNR< 6 (see Fig. 1), and because the
RMS map produced using a 4σ threshold will be different (and deeper) compared to that produced when a 5σ

limit is used. This will affect source numbers detected above a given SNR threshold.

Our judgement is that there are significant benefits of this method: additional sources; improved completeness;
and less sources detected in the wavelet mode which can appear to be below the SNR limit of the catalogue.
These reasons merit selecting down to the 4σ level, even when noting that 2-3% of the additional sources will
be false detections. Many of these false detections may in any case be flagged and removed during the optical
cross-matching phase. Extending the selection further down to a threshold of 3σ would produce an even larger
catalogue, but with around 10% of these additional sources being false; this threshold can also be seen in Fig-
ure 1 to affect the source distribution at larger SNR as well. Hence, despite many of the additional sources being
real, this threshold was deemed too deep. Users interested in accessing these fainter flux densities for specific
galaxies should instead make use of forced photometry measurements from the provided radio maps.

In summary, the final PyBSDF catalogue is selected down to thresh isl=3.0 and thresh pix=4.0, as summarised
in the parameter list in Section 2.
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Figure 2: The fraction of compact (Maj < 10 arcsec) radio sources with a LR match as a function of the the
SNR. The color of the points corresponds to the number of sources in each SNR bin. The blue horizontal line
corresponds to the overall LR identification rate obtained.


